
C++ atomics: from basic to
advanced. What do they do?

Adapted f rom
CppCon 2017

Atomics: the tool of lock-free programming
Lock-free means “fast”

2

• Compare performance of two programs
• Both programs perform the same computations and get the

same results
• Both programs are correct

• No “wait loops” or other tricks
• One program uses std::mutex, the other is wait-free (even

better than lock-free!)

Lock-free means “fast”

2 4 32 64 128
0
1

30

20

10

40

50
Wait-free

Mutex

3

8 16

Number of threads

Sp
ee

du
p

Lock-free means “fast”

4

A tom ic
s td : :a tom ic<uns igned l o n g > s u m ;
v o i d d o _ w o r k (s i z e _ t N , u n s i g n e d l o n g * a) {
f o r (s i ze_ t i = 0 ; i < N ; + + i)

sum += a [i] ;
}
Mu te x
u n s i g n e d l o n g s u m (0) ; std::mutex M ;
v o i d d o _ w o r k (s i z e _ t N , u n s i g n e d l o n g * a) {

u n s i g n e d l o n g s = 0 ;
f o r (s i ze_ t i = 0 ; i < N ; + + i) s += a [i] ;
s td : : lock_guard<std : :mutex> L (M) ; s u m += s ;

}

Is lock-free faster?

2 4 32 64 128
1E+3

1

1E+4

1E+5

1E+6

1E+7

Wait-free

5

Mutex

8 16

Number of threads

Ti
m

e,
ns

Is lock-free faster?

6

• Algorithm rules supreme
• “Wait-free” has nothing to do with time

• Wait-free refers to the number of compute “steps”
• Steps do not have to be of the same duration

• Atomic operations do not guarantee good performance
• There is no substitute for understanding what you’re doing

• This class is the next best thing
• Let’s now understand C++ atomics

What is an atomic operation?

7

• Atomic operation is an operation that is guaranteed to be
execute as a single transaction:
• Other threads will see the state of the system before the

operation started or after it finished, but cannot see any
intermediate state

• At the low level, atomic operations are special hardware
instructions (hardware guarantees atomicity)

• This is a general concept, not limited to hardware
instructions (example: database transactions)

Atomic operation example

i n t x =
0 ;

• x = ?

• Increment is a “read-modify-write” operation:
• read x from memory
• add 1 to x
• write new x to memory

T h re a d
1

+ + x ;

T h re a d
2

+ + x ;

8

Atomic operation example

• R e a d - m o d i f y - w r i t e i n c r e m e n t is n o n -
a t o m i c

• Th is is a d a t a r a c e (i .e . u n d e f i n e d
b e h a v i o r)

i n t x =
0 ;T h re a d 1

i n t t m p = x ;
/ / 0

+ + t m p ; / /
1 x =

t m p ; / / 1

T h re a d 2
i n t t m p = x ;

/ / 0
+ + t m p ; / / 1
x = t m p ; / /
1 !

x = 1
what else could happen?

9

What’s really going on?

Main memory

CPU Core (registers)

x

x L3 cache

x L1 cache

x L2 cache

CPU Core (registers)

x

x L1 cache

x L2 cache

x = 1
what else could happen?

10

What’s really going on?

Main memory
x = 0

x L3 cache

CPU Core (registers) CPU Core (registers)

x x

x L1 cache x L1 cache

x L2 cache x L2 cache

CPU Core (registers)

x = 0

x L1 cache

x L2 cache

11

More insidious atomic operation example

Reads and writes do not have to be atomic!
– On x86 they are for built-in types (int, long)

How to access shared data from multiple threads in C++?

i n t x =
0 ;T h re a d 1

x =
4 2 4 2 4 2 4 2 ;

T h re a d
2 t m p
= x ;
t m p = =
?

12

Data sharing in C++
C++11: std::atomic

#include <atomic>
std::atomic<int> x(0); // NOT std::atomic<int> x=0;

++x is now atomic!
– another thread cannot access during increment

x = 2

T h re a d 1
+ + x ;

T h re a d 2
+ + x ;

13

What’s really going on now?

Main memory

x =
0

x L3 cache

CPU Core (registers) CPU Core (registers)

x x

x L1 cache x L1 cache

x L2 cache x L2 cache

CPU Core (registers)

x = 2

x L1 cache

x L2 cache

x =
1
x =
2

14

std::atomic

15

What C++ types can be made atomic?
What operations can be done on these types?
Are all operations on atomic types atomic?
How fast are atomic operations?

Are atomic operations slower than non-atomic?
Are atomic operations faster than locks?

Is “atomic” same as “lock-free”?
If atomic operations avoid locks, there is no waiting, right?

What types can be made atomic?

16

• Any trivially copyable type can be made atomic
• What is trivially copyable?

• Continuous chunk of memory
• Copying the object means copying all bits (memcpy)
• No virtual functions, noexcept constructor

// OK
// OK

std::atomic<int> i;
std::atomic<double> x;
struct S { long x; long y; };
std::atomic<S> s; // OK!

What operations can be done on std::atomic<T>?

17

• Assignment (read and write) – always
• Special atomic operations
• Other operations depend on the type T

OK, what operations can be done on std::atomic<int>?

One of these is not the same as the others:
// Not x=0! x(0) is OKstd::atomic<int> x{0};

++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2; x
= y + 1;
x = x + 1;
x = x * 2;

does not compile

18

OK, what operations can be done on std::atomic<int>?

One of these is not the same as the others:
// Not x=0! x(0) is OKstd::atomic<int> x{0};

++x;
x++;
x += 1;
x |= 2;
x *= 2;
int y = x * 2; x
= y + 1;
x = x + 1;
x = x * 2;

does not compile

19

n o t
a t o m i c

std::atomic<T> and overloaded operators
• std::atomic<T> provides operator overloads only for atomic

operations (incorrect code does not compile)
• Any expression with atomic variables will not be computed

atomically (easy to make mistakes)
• ++x; is the same as x+=1; is the same as x=x+1;
• – Unless x is atomic!

20

What operations can be done on std::atomic<T>
for other types?

21

• Assignment and copy (read and write) for all types
• Built-in and user-defined

• Increment and decrement for raw pointers
• Addition, subtraction, and bitwise logic operations for

integers (++, +=, –, -=, |=, &=, ^=)
• std::atomic<bool> is valid, no special operations
• std::atomic<double> is valid, no special operations

• No atomic increment for floating-point numbers!

What “other operations” can be done on
std::atomic<T>?
Explicit reads and writes:
std::atomic<T> x;

// Same as T y = x;
// Same as x = y;

T y = x.load();
x.store(y);

Atomic exchange:

// Otherwise, set y=x and return false
Key to most lock-free algorithms

T z = x.exchange(y); // Atomically: z = x; x = y;
Compare-and-swap (conditional exchange):

bool success = x.compare_exchange_strong(y, z); T& y
// If x==y, make x=z and return true ?

22

What is so special about CAS?

23

• Compare-and-swap (CAS) is used in most lock-free
algorithms

• Example: atomic increment with CAS:
std::atomic<int> x{0};
• int x0 = x;
• while (!x.compare_exchange_strong(x0, x0+1)) {}

• For int, we have atomic increment, but CAS can be used to
increment doubles, multiply integers, and many more while (
!x.compare_exchange_strong(x0, x0*2)) {}

What “other operations” can be done on
std::atomic<T>?

24

For integer T:
std::atomic<int> x;
x.fetch_add(y);
int z = x.fetch_add(y);

// Same as x += y;
// Same as z = (x += y) - y;

Also fetch_sub(), fetch_and(), fetch_or(), fetch_xor()
– Same as +=, -= etc operators

More verbose but less error-prone than operators and
expressions

– Including load() and store() instead of operator=()

std::atomic<T> and overloaded operators
• std::atomic<T> provides operator overloads only for atomic

operations (incorrect code does not compile)
• Any expression with atomic variables will not be computed

atomically (easy to make mistakes)
• Member functions make atomic operations explicit
• Compilers understand you either way and do exactly what you

asked
• Not necessarily what you wanted

• Programmers tend to see what they thought you meant not
what you really meant (x=x+1)

25

How fast are atomic operations?

26

Are atomic operations slower than non-atomic?

2 4 32 64 128
1E+07

1

1E+10

1E+09

1E+08

1E+11

1E+12
read
write

27

atomic read
atomic write

++ ++ atomic

8 16

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Are atomic operations faster than locks?

28

Are atomic operations faster than locks?

2 4 32 64 128
1E+06

1

1E+07

1E+08

1E+09

++ atomic

++ mutex

29

8 16

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

1E+06
1 2 4 8 16 32 64 128

1E+07

1E+08

1E+09
++ atomic
++ mutex
++ spinlock

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

which
Are atomic operations faster than locks?

30

Are atomic operations faster than locks?

2 4 32 64 128
1E+06

1

1E+07

1E+08

1E+09
++ atomic
++ mutex
++ spinlock

31

8 16

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Haswell, 4 cores

Remember CAS?

2 4 32 64 128
1E+06

1

1E+07

1E+08

1E+09
++ atomic
++ mutex
++ spinlock
++ CAS

32

8 16

Number of threads

O
pe

ra
tio

ns
/s

ec
on

d

Is atomic the same as lock-free?

33

• std::atomic is hiding a huge secret: it’s not always lock-free
• long x;
• struct A { long x; }
• struct B { long x; long y; };
• struct C { long x; long y; long z; };

