
Malloc tutorial | Patreon

Let's write a malloc and see how it works with existing programs!

This is basically an expanded explanation of what I did after reading this tutorial by
Marwan Burelle and then sitting down and trying to write my own implementation, so the
steps are going to be fairly similar. The main implementation differences are that my
version is simpler and more vulnerable to memory fragmentation. In terms of exposition,
my style is a lot more casual.

This tutorial is going to assume that you know what pointers are, and that you know enough
C to know that *ptr dereferences a pointer, ptr->foo means (*ptr).foo, that malloc is used to
dynamically allocate space, and that you're familiar with the concept of a linked list. For a
basic intro to C, Pointers on C is one of my favorite books. If you want to look at all of this
code at once, it's available here.

Preliminaries aside, malloc's function signature is

void *malloc(size_t size);

It takes as input a number of bytes and returns a pointer to a block of memory of that size.

There are a number of ways we can implement this. We're going to arbitrarily choose to use
sbrk. The OS reserves stack and heap space for processes and sbrk lets us manipulate the
heap. sbrk(0) returns a pointer to the current top of the heap. sbrk(foo) increments the heap
size by foo and returns a pointer to the previous top of the heap.

If we want to implement a really simple malloc, we can do something like

#include <assert.h>
#include <string.h>

Malloc tutorial https://danluu.com/malloc-tutorial/

1 of 11 9/7/24, 4:13 AM

https://patreon.com/danluu
https://patreon.com/danluu
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf
http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf
http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
http://www.amazon.com/gp/product/0673999866/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0673999866&linkCode=as2&tag=abroaview-20&linkId=5C3DNUKAQELP2KUL
http://www.amazon.com/gp/product/0673999866/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0673999866&linkCode=as2&tag=abroaview-20&linkId=5C3DNUKAQELP2KUL
https://github.com/danluu/malloc-tutorial/blob/master/malloc.c
https://github.com/danluu/malloc-tutorial/blob/master/malloc.c
http://man7.org/linux/man-pages/man2/sbrk.2.html
http://man7.org/linux/man-pages/man2/sbrk.2.html

#include <sys/types.h>
#include <unistd.h>

void *malloc(size_t size) {
 void *p = sbrk(0);
 void *request = sbrk(size);
 if (request == (void*) -1) {
 return NULL; // sbrk failed.
 } else {
 assert(p == request); // Not thread safe.
 return p;
 }
}

When a program asks malloc for space, malloc asks sbrk to increment the heap size and
returns a pointer to the start of the new region on the heap. This is missing a technicality,
that malloc(0) should either return NULL or another pointer that can be passed to free without
causing havoc, but it basically works.

But speaking of free, how does free work? Free's prototype is

void free(void *ptr);

When free is passed a pointer that was previously returned from malloc, it's supposed to
free the space. But given a pointer to something allocated by our malloc, we have no idea
what size block is associated with it. Where do we store that? If we had a working malloc,
we could malloc some space and store it there, but we're going to run into trouble if we
need to call malloc to reserve space each time we call malloc to reserve space.

A common trick to work around this is to store meta-information about a memory region in
some space that we squirrel away just below the pointer that we return. Say the top of the
heap is currently at 0x1000 and we ask for 0x400 bytes. Our current malloc will request 0x400
bytes from sbrk and return a pointer to 0x1000. If we instead save, say, 0x10 bytes to store
information about the block, our malloc would request 0x410 bytes from sbrk and return a
pointer to 0x1010, hiding our 0x10 byte block of meta-information from the code that's calling
malloc.

That lets us free a block, but then what? The heap region we get from the OS has to be
contiguous, so we can't return a block of memory in the middle to the OS. Even if we were
willing to copy everything above the newly freed region down to fill the hole, so we could
return space at the end, there's no way to notify all of the code with pointers to the heap
that those pointers need to be adjusted.

Instead, we can mark that the block has been freed without returning it to the OS, so that
future calls to malloc can use re-use the block. But to do that we'll need be able to access the
meta information for each block. There are a lot of possible solutions to that. We'll
arbitrarily choose to use a single linked list for simplicity.

Malloc tutorial https://danluu.com/malloc-tutorial/

2 of 11 9/7/24, 4:13 AM

So, for each block, we'll want to have something like

struct block_meta {
 size_t size;
 struct block_meta *next;
 int free;
 int magic; // For debugging only. TODO: remove this in non-debug mode.
};

#define META_SIZE sizeof(struct block_meta)

We need to know the size of the block, whether or not it's free, and what the next block is.
There's a magic number here for debugging purposes, but it's not really necessary; we'll set
it to arbitrary values, which will let us easily see which code modified the struct last.

We'll also need a head for our linked list:

void *global_base = NULL;

For our malloc, we'll want to re-use free space if possible, allocating space when we can't re-
use existing space. Given that we have this linked list structure, checking if we have a free
block and returning it is straightforward. When we get a request of some size, we iterate
through our linked list to see if there's a free block that's large enough.

struct block_meta *find_free_block(struct block_meta **last, size_t size) {
 struct block_meta *current = global_base;
 while (current && !(current->free && current->size >= size)) {
 *last = current;
 current = current->next;
 }
 return current;
}

If we don't find a free block, we'll have to request space from the OS using sbrk and add our
new block to the end of the linked list.

struct block_meta *request_space(struct block_meta* last, size_t size) {
 struct block_meta *block;
 block = sbrk(0);
 void *request = sbrk(size + META_SIZE);
 assert((void*)block == request); // Not thread safe.
 if (request == (void*) -1) {
 return NULL; // sbrk failed.
 }

 if (last) { // NULL on first request.
 last->next = block;
 }
 block->size = size;
 block->next = NULL;
 block->free = 0;
 block->magic = 0x12345678;
 return block;
}

Malloc tutorial https://danluu.com/malloc-tutorial/

3 of 11 9/7/24, 4:13 AM

As with our original implementation, we request space using sbrk. But we add a bit of extra
space to store our struct, and then set the fields of the struct appropriately.

Now that we have helper functions to check if we have existing free space and to request
space, our malloc is simple. If our global base pointer is NULL, we need to request space and
set the base pointer to our new block. If it's not NULL, we check to see if we can re-use any
existing space. If we can, then we do; if we can't, then we request space and use the new
space.

void *malloc(size_t size) {
 struct block_meta *block;
 // TODO: align size?

 if (size <= 0) {
 return NULL;
 }

 if (!global_base) { // First call.
 block = request_space(NULL, size);
 if (!block) {
 return NULL;
 }
 global_base = block;
 } else {
 struct block_meta *last = global_base;
 block = find_free_block(&last, size);
 if (!block) { // Failed to find free block.
 block = request_space(last, size);
 if (!block) {
 return NULL;
 }
 } else { // Found free block
 // TODO: consider splitting block here.
 block->free = 0;
 block->magic = 0x77777777;
 }
 }

 return(block+1);
}

For anyone who isn't familiar with C, we return block+1 because we want to return a
pointer to the region after block_meta. Since block is a pointer of type struct block_meta, +1
increments the address by one sizeof(struct block_meta).

If we just wanted a malloc without a free, we could have used our original, much simpler
malloc. So let's write free! The main thing free needs to do is set ->free.

Because we'll need to get the address of our struct in multiple places in our code, let's define
this function.

struct block_meta *get_block_ptr(void *ptr) {
 return (struct block_meta*)ptr - 1;

Malloc tutorial https://danluu.com/malloc-tutorial/

4 of 11 9/7/24, 4:13 AM

}

Now that we have that, here's free:

void free(void *ptr) {
 if (!ptr) {
 return;
 }

 // TODO: consider merging blocks once splitting blocks is implemented.
 struct block_meta* block_ptr = get_block_ptr(ptr);
 assert(block_ptr->free == 0);
 assert(block_ptr->magic == 0x77777777 || block_ptr->magic == 0x12345678);
 block_ptr->free = 1;
 block_ptr->magic = 0x55555555;
}

In addition to setting ->free, it's valid to call free with a NULL ptr, so we need to check for
NULL. Since free shouldn't be called on arbitrary addresses or on blocks that are already
freed, we can assert that those things never happen.

You never really need to assert anything, but it often makes debugging a lot easier. In fact,
when I wrote this code, I had a bug that would have resulted in silent data corruption if
these asserts weren't there. Instead, the code failed at the assert, which make it trivial to
debug.

Now that we've got malloc and free, we can write programs using our custom memory
allocator! But before we can drop our allocator into existing code, we'll need to implement a
couple more common functions, realloc and calloc. Calloc is just malloc that initializes the
memory to 0, so let's look at realloc first. Realloc is supposed to adjust the size of a block of
memory that we've gotten from malloc, calloc, or realloc.

Realloc's function prototype is

void *realloc(void *ptr, size_t size)

If we pass realloc a NULL pointer, it's supposed to act just like malloc. If we pass it a
previously malloced pointer, it should free up space if the size is smaller than the previous
size, and allocate more space and copy the existing data over if the size is larger than the
previous size.

Everything will still work if we don't resize when the size is decreased and we don't free
anything, but we absolutely have to allocate more space if the size is increased, so let's start
with that.

void *realloc(void *ptr, size_t size) {
 if (!ptr) {
 // NULL ptr. realloc should act like malloc.
 return malloc(size);
 }

Malloc tutorial https://danluu.com/malloc-tutorial/

5 of 11 9/7/24, 4:13 AM

 struct block_meta* block_ptr = get_block_ptr(ptr);
 if (block_ptr->size >= size) {
 // We have enough space. Could free some once we implement split.
 return ptr;
 }

 // Need to really realloc. Malloc new space and free old space.
 // Then copy old data to new space.
 void *new_ptr;
 new_ptr = malloc(size);
 if (!new_ptr) {
 return NULL; // TODO: set errno on failure.
 }
 memcpy(new_ptr, ptr, block_ptr->size);
 free(ptr);
 return new_ptr;
}

And now for calloc, which just clears the memory before returning a pointer.

void *calloc(size_t nelem, size_t elsize) {
 size_t size = nelem * elsize; // TODO: check for overflow.
 void *ptr = malloc(size);
 memset(ptr, 0, size);
 return ptr;
}

Note that this doesn't check for overflow in nelem * elsize, which is actually required by the
spec. All of the code here is just enough to get something that kinda sorta works.

Now that we have something that kinda works, we can use our with existing programs (and
we don't even need to recompile the programs)!

First, we need to compile our code. On linux, something like

clang -O0 -g -W -Wall -Wextra -shared -fPIC malloc.c -o malloc.so

should work.

-g adds debug symbols, so we can look at our code with gdb or lldb. -O0 will help with
debugging, by preventing individual variables from getting optimized out. -W -Wall -Wextra
adds extra warnings. -shared -fPIC will let us dynamically link our code, which is what lets
us use our code with existing binaries!

On macs, we'll want something like

clang -O0 -g -W -Wall -Wextra -dynamiclib malloc.c -o malloc.dylib

Note that sbrk is deprecated on recent versions of OS X. Apple uses an unorthodox definition
of deprecated -- some deprecated syscalls are badly broken. I didn't really test this on a Mac,
so it's possible that this will cause weird failures or or just not work on a mac.

Malloc tutorial https://danluu.com/malloc-tutorial/

6 of 11 9/7/24, 4:13 AM

http://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy/
http://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy/

Now, to use get a binary to use our malloc on linux, we'll need to set the LD_PRELOAD
environment variable. If you're using bash, you can do that with

export LD_PRELOAD=/absolute/path/here/malloc.so

If you've got a mac, you'll want

export DYLD_INSERT_LIBRARIES=/absolute/path/here/malloc.so

If everything works, you can run some arbitrary binary and it will run as normal (except
that it will be a bit slower).

$ ls
Makefile malloc.c malloc.so README.md test test-0 test-1 test-2 test-3 test-4

If there's a bug, you might get something like

$ ls
Segmentation fault (core dumped)

Debugging

Let's talk about debugging! If you're familiar with using a debugger to set breakpoints,
inspect memory, and step through code, you can skip this section and go straight to the
exercises.

This section assumes you can figure out how to install gdb on your system. If you're on a
mac, you may want to just use lldb and translate the commands appropriately. Since I don't
know what bugs you might run into, I'm going to introduce a couple of bugs and show how
I'd track them down.

First, we need to figure out how to run gdb without having it segfault. If ls segfaults, and we
try to run gdb ls, gdb is almost certainly going to segfault, too. We could write a wrapper to
do this, but gdb also supports this. If we start gdb and then run set environment LD_PRELOAD=./
malloc.so before running the program, LD_PRELOAD will work as normal.

$ gdb /bin/ls
(gdb) set environment LD_PRELOAD=./malloc.so
(gdb) run
Program received signal SIGSEGV, Segmentation fault.
0x00007ffff7bd7dbd in free (ptr=0x0) at malloc.c:113
113 assert(block_ptr->free == 0);

As expected, we get a segfault. We can look around with list to see the code near the
segfault.

(gdb) list
108 }
109
110 void free(void *ptr) {
111 // TODO: consider merging blocks once splitting blocks is implemented.

Malloc tutorial https://danluu.com/malloc-tutorial/

7 of 11 9/7/24, 4:13 AM

112 struct block_meta* block_ptr = get_block_ptr(ptr);
113 assert(block_ptr->free == 0);
114 assert(block_ptr->magic == 0x77777777 || block_ptr->magic == 0x12345678);
115 block_ptr->free = 1;
116 block_ptr->magic = 0x55555555;
117 }

And then we can use p (for print) to see what's going on with the variables here:

(gdb) p ptr
$6 = (void *) 0x0
(gdb) p block_ptr
$7 = (struct block_meta *) 0xffffffffffffffe8

ptr is 0, i.e., NULL, which is the cause of the problem: we forgot to check for NULL.

Now that we've figured that out, let's try a slightly harder bug. Let's say that we decided to
replace our struct with

struct block_meta {
 size_t size;
 struct block_meta *next;
 int free;
 int magic; // For debugging only. TODO: remove this in non-debug mode.
 char data[1];
};

and then return block->data instead of block+1 from malloc, with no other changes. This
seems pretty similar to what we're already doing -- we just define a member that points to
the end of the struct, and return a pointer to that.

But here's what happens if we try to use our new malloc:

$ /bin/ls
Segmentation fault (core dumped)
gdb /bin/ls
(gdb) set environment LD_PRELOAD=./malloc.so
(gdb) run

Program received signal SIGSEGV, Segmentation fault.
_IO_vfprintf_internal (s=s@entry=0x7fffff7ff5f0, format=format@entry=0x7ffff7567370 "%s%s%s:%u:
%s%sAssertion `%s' failed.\n%n", ap=ap@entry=0x7fffff7ff718) at vfprintf.c:1332
1332 vfprintf.c: No such file or directory.
1327 in vfprintf.c

This isn't as nice as our last error -- we can see that one of our asserts failed, but gdb drops
us into some print function that's being called when the assert fails. But that print function
uses our buggy malloc and blows up!

One thing we could do from here would be to inspect ap to see what assert was trying to
print:

(gdb) p *ap

Malloc tutorial https://danluu.com/malloc-tutorial/

8 of 11 9/7/24, 4:13 AM

$4 = {gp_offset = 16, fp_offset = 48, overflow_arg_area = 0x7fffff7ff7f0, reg_save_area =
0x7fffff7ff730}

That would work fine; we could poke around until we figure out what's supposed to get
printed and figure out the fail that way. Some other solutions would be to write our own
custom assert or to use the right hooks to prevent assert from using our malloc.

But in this case, we know there are only a few asserts in our code. The one in malloc
checking that we don't try to use this in a multithreaded program and the two in free
checking that we're not freeing something we shouldn't. Let's look at free first, by setting a
breakpoint.

$ gdb /bin/ls
(gdb) set environment LD_PRELOAD=./malloc.so
(gdb) break free
Breakpoint 1 at 0x400530
(gdb) run /bin/ls

Breakpoint 1, free (ptr=0x61c270) at malloc.c:112
112 if (!ptr) {

block_ptr isn't set yet, but if we use s a few times to step forward to after it's set, we can see
what the value is:

(gdb) s
(gdb) s
(gdb) s
free (ptr=0x61c270) at malloc.c:118
118 assert(block_ptr->free == 0);
(gdb) p/x *block_ptr
$11 = {size = 0, next = 0x78, free = 0, magic = 0, data = ""}

I'm using p/x instead of p so we can see it in hex. The magic field is 0, which should be
impossible for a valid struct that we're trying to free. Maybe get_block_ptr is returning a bad
offset? We have ptr available to us, so we can just inspect different offsets. Since it's a void *,
we'll have to cast it so that gdb knows how to interpret the results.

(gdb) p sizeof(struct block_meta)
$12 = 32
(gdb) p/x *(struct block_meta*)(ptr-32)
$13 = {size = 0x0, next = 0x78, free = 0x0, magic = 0x0, data = {0x0}}
(gdb) p/x *(struct block_meta*)(ptr-28)
$14 = {size = 0x7800000000, next = 0x0, free = 0x0, magic = 0x0, data = {0x78}}
(gdb) p/x *(struct block_meta*)(ptr-24)
$15 = {size = 0x78, next = 0x0, free = 0x0, magic = 0x12345678, data = {0x6e}}

If we back off a bit from the address we're using, we can see that the correct offset is 24 and
not 32. What's happening here is that structs get padded, so that sizeof(struct block_meta) is
32, even though the last valid member is at 24. If we want to cut out that extra space, we
need to fix get_block_ptr.

That's it for debugging!

Malloc tutorial https://danluu.com/malloc-tutorial/

9 of 11 9/7/24, 4:13 AM

Exercises

Personally, this sort of thing never sticks with me unless I work through some exercises, so
I'll leave a couple exercises here for anyone who's interested.

1. malloc is supposed to return a pointer “which is suitably aligned for any built-in type”.
Does our malloc do that? If so, why? If not, fix the alignment. Note that “any built-in
type” is basically up to 8 bytes for C because SSE/AVX types aren't built-in types.

2. Our malloc is really wasteful if we try to re-use an existing block and we don't need all
of the space. Implement a function that will split up blocks so that they use the
minimum amount of space necessary

3. After doing 2, if we call malloc and free lots of times with random sizes, we'll end up
with a bunch of small blocks that can only be re-used when we ask for small amounts
of space. Implement a mechanism to merge adjacent free blocks together so that any
consecutive free blocks will get merged into a single block.

4. Find bugs in the existing code! I haven't tested this much, so I'm sure there are bugs,
even if this basically kinda sorta works.

Resources

As noted above, there's Marwan Burelle tutorial.

For more on how Linux deals with memory management, see this post by Gustavo Duarte.

For more on how real-world malloc implementations work, dlmalloc and tcmalloc are both
great reading. I haven't read the code for jemalloc, and I've heard that it's a bit more more
difficult to understand, but it's also the most widely used high-performance malloc
implementation around.

For help debugging, Address Sanitizer is amazing. If you want to write a thread-safe version,
Thread Sanitizer is also a great tool.

There's a Spanish translation of this post here thanks to Matias Garcia Isaia.

Acknowledgements

Thanks to Gustavo Duarte for letting me use one of his images to illustrate sbrk, and to Ian
Whitlock, Danielle Sucher, Nathan Kurz, "tedu", @chozu@fedi.absturztau.be, and David
Farrel for comments/corrections/discussion. Please let me know if you find other bugs in
this post (whether they're in the writing or the code).

← Integer overflow checking cost Markets, discrimination, and "lowering the bar" →

Malloc tutorial https://danluu.com/malloc-tutorial/

10 of 11 9/7/24, 4:13 AM

http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf
http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer
https://code.google.com/p/address-sanitizer/wiki/AddressSanitizer
https://code.google.com/p/data-race-test/wiki/ThreadSanitizer
https://code.google.com/p/data-race-test/wiki/ThreadSanitizer
http://mgarciaisaia.github.io/tutorial-c/blog/2014/12/26/un-tutorial-rapido-para-implementar-y-debuggear-malloc/
http://mgarciaisaia.github.io/tutorial-c/blog/2014/12/26/un-tutorial-rapido-para-implementar-y-debuggear-malloc/
https://twitter.com/danluu
https://twitter.com/danluu
https://danluu.com/integer-overflow/
https://danluu.com/integer-overflow/
https://danluu.com/tech-discrimination/
https://danluu.com/tech-discrimination/

Archive Mastodon Threads

Patreon LinkedIn Twitter RSS

Malloc tutorial https://danluu.com/malloc-tutorial/

11 of 11 9/7/24, 4:13 AM

https://danluu.com/
https://danluu.com/
https://mastodon.social/@danluu
https://mastodon.social/@danluu
https://threads.net/@danluu.danluu
https://threads.net/@danluu.danluu
https://www.patreon.com/danluu
https://www.patreon.com/danluu
https://www.linkedin.com/in/danluu/
https://www.linkedin.com/in/danluu/
https://twitter.com/danluu/
https://twitter.com/danluu/
https://danluu.com/atom.xml
https://danluu.com/atom.xml

